
SmartBlock
Web Attack Tracking Software

Final Report

Team: sdmay21-17
Client: Cylosoft

Advisor: Doug Jacobson

Team Members:
Andrew Marek - Software Engineer / Administrator

Jamie Sampson - Security Engineer
Paul Degnan - Automation Engineer
Emily Young - Database Engineer

Megan Hill - Website Engineer

Team email: sdmay21-17@iastate.edu
Team website: https://sdmay21-17.sd.ece.iastate.edu/

mailto:sdmay21-17@iastate.edu

Executive Summary 4
Background 4
Project Description 4

Evolution 4

Functional Requirements 6

Non-Functional Requirements 7
Economic Requirements 7
Environmental Requirements 7
UI Requirements 7

Standards 7

Engineering Constraints 7

Security Concerns and Countermeasures 8
Cybersecurity 8

Implementation Details 8
Internet Information Services (IIS) 8
File Watcher 9
Database 10
Website 10

Backend 10
Frontend 11

Testing and results 11
Testing Application 11
Unit Testing Smart Block 12
Unit Testing Website 12

Context 13
Related Works 13

References 14

Appendices 14
Appendix I 14

Dependencies 14
Operation Manual 14

Application: 14
Website 15

Appendix II 15
Alternative / Initial Design: 15

Appendix III 16
Code 16

Executive Summary

Background
Cylosoft is a custom website and IT consulting company located in Ames, Iowa. It has

been found that many of their websites receive loads of malicious traffic. This traffic is recorded
daily in the form of log files that are located in each website’s respective directory. The bad
traffic is usually detected by a human manually parsing the log files and looking at attributes,
such as the location of the connecting IP address, and frequency of connections. Due to the
arduous task of parsing the log files by hand, Cylosoft has requested a program to automate the
process of blocking particular IPs that they deem malicious, a way to visualize the connections
that are blocked, and a way to store the blocked IPs. SmartBlock is the solution that we created
to address these requests.

Project Description
SmartBlock is a web-attack tracking application that aims to provide Cylosoft with a

reliable and secure interface to gauge how and when their websites are being attacked. Notably,
Cylosoft uses Microsoft Internet Information Services (IIS) to host their customer’s websites.
The project’s goal is to secure Cylosoft’s websites with appropriate Microsoft IIS settings to
block potentially malicious connections and parse the IIS-generated logs to store and display
information relevant to the administration of the websites.

Evolution
From the inception of SmartBlock, the overarching goal has always been the same: find a

way to secure Cylosoft’s websites in a programmatic fashion using technologies familiar to
Cylosoft. Generally, our design shifted over the course of the year from writing a log parser to
block the IPs ourselves to configuring Microsoft IIS to block them for us. Additionally, we
decided to create a visual component in the form of a website for our client, such that the
statistics regarding the web attacks are visualized and easy to see.

Our original intention of implementing our own program to block web-attacks shifted
into configuring Microsoft IIS appropriately and recording the particularities of the log entries
that IIS produces. From the beginning we created a web-attack blocking application that runs as
a daemon on their servers, which would parse IIS log files as they come in - a daily process. The
program would look for particular attributes, namely: IP addresses known to be malicious,
addresses from uncommon locations, and addresses that connected too frequently to the websites
under scrutiny.

We planned on writing a log parser in the form of a .NET console application that would
look for IP addresses to block, using the aforementioned criteria. The program would then tell

Microsoft IIS to block the IP addresses, as well as marshal this information into objects to store
in our database.

Figure 1 - Our initial module design of the SmartBlock system.

After exploring Microsoft IIS more extensively, we found that we could utilize Microsoft
IIS’s configuration settings to block connections, as we learned that IIS offered a configuration to
perform similar functions natively. The advantage of utilizing IIS’s native function has the
potential to be far more reliable as Microsoft’s products are battle-tested and there is no need to
recreate the wheel. Thus, our goal shifted to automating the configuration of IIS and visualizing
traffic information.

Figure 2 - Our final component diagram. Notably including a frontend that reads from our Azure database.

As one can see in Figure 2.02, we now introduce a front-end to the design and interface
with Microsoft IIS more closely. These new design choices allow us to use Microsoft IIS to
block the websites that are specified in the provided configuration files.

Functional Requirements
- Application should recognize bad web traffic based on invalid website URLs
- Application should identify bad web traffic exceeding a certain frequency
- User should be able to customize website URLs and frequency
- Application should block bad web traffic through IIS config changes
- Application should be able to read Microsoft IIS log files
- Application should allow configuration to IIS Site ID
- Application should keep a record of IPs that have been blocked
- Application should process multiple sites on a single server
- Application should protect the security of the user data collected
- Application database queries will have SQL injection protection

Non-Functional Requirements
Economic Requirements

- The design will take no longer than 500 person-hours
- Application development should take approximately 1000 person-hours
- Application database should not cost more than $100

Environmental Requirements

- Application should run on a Windows Machine
- Application should use an Azure Database
- Application should use .NET Core
- Application should use Github as its version control system

UI Requirements

- Application should produce verbose logging information
- Application should have detailed comments, readmes, and developer files
- Should provide a web user interface to view data about blocked logs

Standards
The bulk of our standards are best practices surrounding the operation of Microsoft IIS,

writing standardized C# code that is compliant with Cylosoft’s technologies, and coding
practices. With that being said, we also wanted to follow Internet Standards. Below is a
comprehensive list of guidelines we followed during the development of SmartBlock:

- Internet Standards - IETF
- A set of standards that describe how the internet is put together that is accepted by

the premier internet standards organization [1].
- Microsoft IIS best practices

- Utilizing site dynamic security configurations
- Follow C# coding standards
- Develop using Cylosoft’s technology stack

Engineering Constraints
- Application must run on Windows OS
- Application must use the client provided Azure database
- Application must use Microsoft IIS for blocking
- Application must be built using .NET Core framework to integrate with existing software
- Application code will be stored in a private Github repository

Security Concerns and Countermeasures

Cybersecurity
Our application focuses heavily on cybersecurity. We are focusing on two main

cybersecurity threats. First, we are focusing on users that are hitting URLs that do not exist.
Secondly, we are configuring IIS to handle any URLs that have already been deemed malicious.
Cylosoft has provided a list of URLs that they frequently see in attacks. This list included details
such as a CloudFlare connecting IP of “phpliteadmin.php” for websites that do not use PHP or
“wp-admin” for websites that are not WordPress sites. Another sign of a malicious user accessing
a website is, when a user accesses websites faster than humanly possible. This type of behavior
implies that the users are likely bots or malicious users, as opposed to entities that should be
accessing the website.

We allow users of our application to set how many URLs a user can be on at a single time
and how many requests one can make in a given time period. This allows us to reduce the
likelihood of false positives on websites that are heavy on redirects or could have a user clicking
through a website very quickly.

Access to our database is controlled by IP. This means that in order to connect to the
database, you need to both know all of the secrets necessary to connect to the database and be
using an IP that has been given access to it. We also ensured that our codebase was set up in a
private GitHub repo so that only necessary people would have access to our code.

Implementation Details

Internet Information Services (IIS)
Microsoft IIS is doing the majority of the work for our application in relation to blocking

URLs. We allow users to contribute JSON config files for each site. Our application takes these
configuration files and uses them to configure each site’s IIS settings. This makes SmartBlock
highly customizable, so different sites can block based on different features. We also offer a
default configuration that can be used across all websites that one is monitoring if a SmartBlock
user does not wish to have website-specific customization.

Figure 3 - An example of IIS configuration settings in JSON format.

Microsoft IIS has various modules that allow one to keep their site secure and regulate IP
traffic. One module in particular is the request filtering module which allows one to add rules or
filters to a website’s security settings such that it blocks specific patterns. One of our
application’s main focuses is to allow a user to add strings that should be denied, giving the user
the option to query URLs. The request filtering module also includes a list of URLs that should
be blocked if incoming traffic contains the provided URL string. This was our initial design
before we discovered that Microsoft IIS already has this built in - it just needs to be configured.

Based on the configuration, IIS blocks IPs as necessary and generates a log file for each
website. If a connecting IP is already blocked, IIS will generate a 500-level HTTP status code
(the sc-status field) if the IP has already been blocked. This information gets fed into the file
watcher component of our system.

File Watcher
SmartBlock’s second largest component is the host of FileWatcher objects we deploy to

detect new log entries. SmartBlock uses the C# FileSystemWatcher class in order to monitor
directories and actively create alerts upon any changes. We use this component to tell
SmartBlock that a new log file has been created, deleted, or edited. In our implementation, we
create a FileWatcher object for each folder that instantiates a LogParser object. When the
FileWatcher detects a change, update, or deletion in the FileWatcher’s respective folder, the
LogParser object parses through the log entries looking for any blocked IPs to place into objects
and send to our database.

Figure 4 - A component diagram of the relationship between the file watchers and a nested directory
hierarchy of websites.

Database
We are using an Azure database provided to us by Cylosoft. We have created a table in

their database, LogData, which stores all of the information about which logs were blocked by
IIS. SmartBlock is reading through IIS logs and checking which ones were blocked by our IIS
settings. Those blocked logs are formatted and inserted into our database, where they can be
preserved for posterity and accessed by our website.

Website
Along with an application to configure Microsoft IIS, we created a website to visualize

data from the SmartBlock .NET application. Our application sends information about who is
accessing Cylosoft’s websites to the aforementioned Azure database, which is then displayed on
our website.

Backend
Our website uses Hapi as the API framework. It uses an NPM package, knex, to connect

to our database. The backend is set up to render the front end using the NextJS method
generateNextApp, which allows our entire website to be built with one command since starting
the backend was all that was necessary to render the frontend web pages. We provide two
different backend endpoints. One of the endpoints provides data for the chart which includes
website name, frequency, and date. The other endpoint provides more detailed information for

the table such as IP addresses csHost, csUriStem, and date/time. All API endpoints are prefixed
with API, e.g., API/table-data and API/counts.

Frontend
Our website is built using the NextJS framework. For front-end UI components, we used

Material UI to generate tables and any buttons that are used in the project. The table below is
specifically a Material UI DataGrid, which gives us built-in functionality for filtering and sorting
our data. We also used package recharts to generate the charts and the tooltip that shows the
specific information for the graph. We use calls to the backend to populate the data for the chart
and table.

Figure 5 - The website component to SmartBlock visualizing the data received from the database.

Testing and results

Testing Application
We took various steps in order to test that our application is working as intended. In order

to get our application running and connected to the database and Microsoft IIS, we used
Microsoft Remote Desktop. This allows us to set up a local website to test our IIS configurations.
Additionally, we used the log-only mode in IIS to test our application in a production
environment. Log-only mode allowed us to run our application without potentially blocking
innocent users. It also checks that our application is behaving as expected, and is not blocking
users unnecessarily or missing users that should have been blocked by the application.

Unit Testing Smart Block
In order to test our .NET Core application, we used MSTest which is a C# unit-testing

framework written by Microsoft. Our tests focused on the LogParser’s functionality. The tests
ensured that as we updated our application, we did not accidentally break our existing
functionality. We used example log files provided by our client for our unit tests so that our tests
were representative of what would be seen in a live environment.

Unit Testing Website
In order to test our website we used Jest, a JavaScript testing framework that we chose

due to its popularity and speed. Our unit tests consider both frontend and backend components
of the website, testing features such as server and database connectivity, as well as the style of
the frontend. Overall, the website tests provide 100% branch and statement coverage.

Figure 6 - An example of our unit-tested web component.

Context

Related Works
Generally, there are many tools that help block cyber attacks and visualize the results that

are available on the market. They each come with different and unique characteristics, with
some even being open source. Some notable options include:

Snort - a very popular open-source intrusion prevention system. Snort uses a series of rules that
define malicious network activity to detect packets that align with the rules [2]. Snort will then
generate alerts for users. This is very similar to what we want to create, except we would want
to make this specific to Cylosoft and also more “user friendly”. A disadvantage of Snort is that
Snort is mainly a command line utility, and we wanted our system to have a GUI component. It
is also not very “user-friendly” in the sense that one needs to make rules in an oddly-formatted
configuration file and also have experience using command line tools. However, advantageously
it is very lightweight, robust, and fast - which makes it extremely appealing.

Splunk - Splunk is a software for searching, monitoring, and analyzing machine-generated data
[3]. This concept could very well expand to our use case, for instance, analyzing Microsoft IIS
logs. One could use it to create dashboards that aid in monitoring events in network activity.
One huge advantage of Splunk is that it is community driven, where they have a host of apps and
add-ons for Splunk which can increase its usefulness. A downside to Splunk is that it may have
a steep learning curve and supposedly some users report that building queries can be
cumbersome.

Datadog - Datadog is a monitoring service for cloud applications and servers. Datadog has a
dashboard, alerting, and visual metrics to describe what is happening in the parsed log files [4].
Some advantages of datadog is that you can describe the format of the log that you want to parse
- making it versatile. A disadvantage of datadog is that it’s not open source, which isn’t too
impactful, but open-source projects are generally more modifiable and transparent.

Overall, there are probably countless technologies that do something similar to what we
have created, however what may differentiate our product from others is that we want to simplify
the process and setup of IIS and visualize it with modern technologies. Another important point
is that our product is specific to Cylosoft’s setup. The task at hand was to integrate our program
with Microsoft IIS as well as possible, which naturally called for a custom .NET application as
opposed to the aforementioned products.

References
[1] “Internet standards,” IETF. [Online]. Available: https://www.ietf.org/standards/. [Accessed:
20-Apr-2021].

[2] “New to Snort?,” Snort. [Online]. Available: https://www.snort.org/. [Accessed:
25-Oct-2020].

[3] “The Data-to-Everything Platform Built for the Cloud,” Splunk. [Online]. Available:
https://www.splunk.com/. [Accessed: 25-Oct-2020].

[4] Datadog, “Datadog,” Cloud Monitoring as a Service, 14-Jul-2016. [Online]. Available:
https://www.datadoghq.com/. [Accessed: 25-Oct-2020].

Appendices

Appendix I

Dependencies
- Website component

- NodeJS
- NPM packages

- .NET core
- NLog

Operation Manual

Application:

The source code for SmartBlock is available at its official GitHub repository:
https://github.com/JamieSampson08/sdmay21-17. One should note that this repository is
private, and this application is a product of Cylosoft’s. Thus, one must obtain permission before
accessing this repository. However, assuming one has access to the program, the following steps
are used to configure and run the software:

- Install the required dependencies listed above using your preferred method.
- Download the code by cloning the repository or downloading it manually from GitHub.

https://github.com/JamieSampson08/sdmay21-17

- To configure IIS settings specific to your website, navigate to the SiteSettings folder and
create a new .json file which will specify the types of filterings and dynamic security
settings you’d like to use. Multiple templates have been provided in the same folder.

- Edit the Sites.json file, which contains a list of sites that will be taking on specific
configurations. Enter the names of the JSON settings files that you previously created.

- Lastly, if you have a folder path different from the default setup that we have created, i.e.,
not in the program folder, one can insert the relative path of the directory containing the
sites log files in our Constants.cs file by changing the BaseLogFilePath.

- After one has followed the previous steps, one can build the program and our application
will begin monitoring the specified folder(s) for any changes.

- Once a change is detected, SmartBlock will alert the user via a logger, and also a
visualization on our website component if launched as well (see below for a setup guide).

Website

Follow these steps to run the website component of SmartBlock:
- Clone or fork the repository from GitHub after obtaining access.
- In your terminal, use the cd command to navigate into the sdmay17-21-website folder
- In your terminal enter:

- npm i
- npm run dev.

- This will install the necessary npm packages and launch the website
locally.

The website will run at 0.0.0.0:3000. You can go to 0.0.0.0:3000/data to see the page that we
have shown screenshots of in other parts of our report.

Appendix II

Alternative / Initial Design:
Our initial design ended up being reasonably close to what we ended up creating. The

only major change from our design at the end of last semester is that instead of sending the IPs
that are going to be blocked to IIS, we are letting IIS enforce the blocking rules. We are then
reading from the logs which IPs that IIS blocked and creating entries in our database, eventually
displaying them on our website. If one wanted to perhaps deviate from the capabilities of
Microsoft IIS, or use another website hosting system, one could add on to this program and
develop new criteria for blocking IPs. Once the new criteria is developed, one could utilize the
API Microsoft provides to interface with IIS.

Appendix III

Code
Since our code is owned by Cylosoft, we are not going to share it in this document. If you

believe you need to see the code reach out to Andrew Dakin at Cylosoft to obtain his permission.
It is stored in a GitHub repository at this URL: https://github.com/JamieSampson08/sdmay21-17,
but the repository is private, so permission must be obtained before seeing the code

https://github.com/JamieSampson08/sdmay21-17

